

Stable Round-Robin Scheduling Algorithms for High-Performance Input Queued
Switches1

Jing Liu, Hung Chun Kit¶, Mounir Hamdi, and Chi Ying Tsui¶
Department of Computer Science

¶Department of Electrical and Electronic Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
 hamdi@cs.ust.hk

Abstract

High-performance input-queued switches require high-
speed scheduling algorithms while maintaining good
performance. Various round-robin scheduling algorithms
for Virtual Output Queuing (VOQ) crossbar-based packet
switch architectures have been proposed. It has been
demonstrated that they can operate at high speed (e.g.,
OC192), and are relatively simple to implement in
hardware. In particular, a group of fully desynchronized
round-robin scheduling algorithms, named SRR (static
round robin matching), which have been proposed
recently, achieve pretty good delay performance while
easy to implement. The main problem with these
arbitration algorithms is that they are not stable under
non-uniform traffic. In this paper, based on the concept of
both randomized algorithms and SRR, we propose a new
scheduling algorithm, termed DRDSRR (derandomized
rotating double static round-robin), which is shown to be
stable under all Bernoulli i.i.d. admissible traffic and
performs better than SRR.. In addition, we also propose a
novel pipelining scheme for the hardware implementation
of these scheduling algorithms which can achieve one
more iteration within each cycle time, and hence better
performance, when compared with the pipelining schemes
used in conventional designs.

1. Introduction

Input queued (IQ) switches are frequently used in the
design of high-speed switching architectures. IQ switches
have an internal speedup equivalent to the line rate, and as
a result, require moderate memory bandwidth which is
commercially available. However, it is well known that
the Head of Line Blocking (HOL) limits the throughput of
an IQ switches with a crossbar fabric to a 58.6% [1] under

1 This research work has been partially supported by
grant from the Hong Kong Research Grant Council.

uniform traffic when a single FIFO queue is used at each
input. It is well established that using virtual output
queuing (VOQ) [2] can eliminate the HOL blocking
entirely while retaining the same scalability and memory
bandwidth requirement of a FIFO IQ switch. Instead of a
single FIFO queue, separate queues for different outputs
are maintained at each input. With a proper scheduling
algorithm, it has been shown that 100% throughput can be
achieved for an IQ switch employing VOQ under both
uniform and non-uniform traffic.

Various scheduling algorithms have been proposed for
the VOQ architecture. For example, maximum
weight/size matching algorithms can achieve 100%
throughput, i.e., stable under any admissible traffic. Such
algorithms include LQF, OCF, LPF [3][4]. But they are
impractical and too complex to implement in hardware for
high-speed line rates. Maximal size matching (MSM)
algorithms are practical and perform well under uniform
traffic. But they are not stable under non-uniform traffic,
which infers less than 100% throughput. Example
algorithms are iSLIP [5], and FIRM [6]. Recently, a set of
fully desynchronized round robin scheduling algorithms,
SRR (static round-robin) [7] have been proposed. They
perform much better than iSLIP and FIRM using even
less complicated hardware. However, they are inevitably
unstable under non-uniform traffic, since they are MSM
algorithms.

 Recently, it has been proven that some randomized
algorithms can be made stable under any admissible
traffic and only require linear complexity [8]. However,
through extensive experimentations, it has been shown
that the average delay of these randomised algorithms is
higher than those of maximal size matching algorithms.
This is true even for non-uniform traffic as long as the
maximal size matching algorithms are operating in their
“stable” region [12]. The main reason for this is that the
randomised algorithms have been designed with the

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

objective of making them stable, rather than achieving a
small average delay. In this paper, we propose a new
algorithm: DRDSRR (derandomized rotating double static
round-robin) that attempts to combine the advantages of
both schemes. That is, being stable and having lower
average delays. DRDSRR achieves both a high
instantaneous throughput of a MSM algorithm, and the
stability of randomized algorithms. As a result, it will be
shown that the DRDSRR is not only stable under any
traffic, but has low average delay as well.

The rest of the paper is organized as follows. Section 2
briefly describes randomized algorithms. Section 3
introduces the SRR scheduling algorithms. We present the
DRDSRR algorithm in Section 4. In Section 5, an
improved version of DRDSRR is proposed. Section 6
presents the simulation results and Section 7 analyzes the
computational complexity of the proposed algorithms.
Section 8 gives a possible hardware implementation of
our algorithms. In Section 9, we exploit a generalization
of DRDSRR to other round-robin scheduling algorithms.
Section 10 concludes the paper.

2. Randomized algorithms

Randomized algorithms are based on several
observations which include: (a) the state of the switch (for
example, the lengths of its queues) changes little during
successive time slots. This indicates that it is possible to
use the matching at time t for devising the matching at
time t + 1. (b) A randomly generated matching can be
used to improve the matching used at time t for obtaining
the matching at time t + 1.

2.1. Algo1: A randomized scheme with memory

Based on the above concepts, a scheduling (matching)
algorithm is proposed by Tassiulas [8].
Algo1:

(a) Let S(t) be the schedule used at time t.
(b) At time t + 1 choose a matching R(t + 1)

uniformly at random from the set of all N!
possible matchings.

(c) Let S(t + 1) = arg
)}1(),({

max
+∈ tRtSS

<S,Q(t +1)> (Q(t

+1) is the queue-lengths matrix at time t + 1.)

Lemma 1 (Tassiulas [8]). Algo1 is stable under any
Bernoulli i.i.d. admissible input.

2.2. Hamiltonian walk on the set of all matchings

We construct a graph with N! nodes, each

corresponding to a distinct matching, and all possible
edges between these nodes. A Hamiltonian walk on this
graph is to visit each of the N! nodes exactly once during

times t = 1,…, N!. Extend t > N! by defining Z(t) = Z(t
mod N!). For example, when N = 3, we get such a
Hamiltonian walk: Z(1) = (1, 2, 3), Z(2) = (1, 3, 2), Z(3) =
(3, 1, 2), Z(4) = (3, 2, 1), Z(5) = (2, 3, 1), Z(6) = (2, 1, 3),
Z(7) = Z(1), and Z(8) = Z(2),… ((1, 2, 3) denotes a
permutation (π (1), π (2), π (3))).

2.3. Algo2: A derandomization of Algo1

 Based on the concept of Hamiltonian walk on the set of
all matchings, Algo2  a derandomization of Algo 1 is
proposed by Paolo Giaccone [9].

Algo2:
(a) Let S(t) be the schedule used at time t.
(b) At time t + 1, let R(t + 1) = Z(t + 1), the matching

visited by the Hamiltonian walk.

(c) Let S(t + 1) = arg
)}1(),({

max
+∈ tRtSS

<S,Q(t + 1)>

Lemma 2 (Paolo Giaccone [9]) Consider an input-
queued switch with admissible Bernoulli i.i.d. inputs. Let
Q(t) be the queue-size process that results when the

switch uses a given scheduling algorithm B. Let WB(t)
denote the weight of the schedule used by B at time t, and
let W*(t) be the weight of Maximum Weight Matching
(MWM) given the same queue-size process Q(t). If there
exists a positive constant c such that the property

WB(t) ≥ W*(t)-c holds for all t, then the
algorithm B is stable.

Lemma 3 (Paolo Giaccone [9]) An input-queued switch
using Algo2 is stable under all admissible Bernoulli i.i.d.
inputs.

Proof. Since there is at most 1 packet arriving at or
departing from each input queue in each time slot, we
obtain for any matching M

<M,Q(t)> ≥ <M,Q(t - s)> - sN. (1)

 Let S(t) denote the schedule used by Algo2 at time t,
and let W2(t) = <S(t),Q(t)> be its weight.

 Consider a specific time instant T. Let S1 and S0 denote
the maximum weight matchings at time T and T - N!,
respectively. By the property of the Hamiltonian walk,
there is a t’∈[T - N!,T] such that Z(t’) = S0. Then

 <S(t’),Q(t’)> ≥ <S0,Q(t’)> (the definition of Algo2)

 <S0,Q(t’)> ≥ <S0,Q(T - N!)>-(t’ + N! - T)N (from (1))

 It follows from (1) and the definition of Algo2 that

 <S(t),Q(t)> - N ≤ <S(t),Q(t + 1)> ≤ <S(t + 1),Q(t +
1)>.

 Using this repeatedly in the following, we obtain

<S(T),Q(T)> ≥ <S(t’),Q(t’)> - (T - t’)N ≥ <S0,Q(T -
N!)> - NN! ≥ <S1,Q(T - N!)> - NN!

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

 (S0 is the maximum weight schedule at time (T-N!)) and
<S1,Q(T-N!)>-NN! ≥ <S1,Q(T)> - 2NN! (from (1))

 Since T was arbitrary, we have shown that

 W2(t) ≥ W*(t)-2NN! For every t.

 By Lemma 2, it is proven that Algo2 is stable under all
admissible Bernoulli i.i.d. inputs.

3. A group of Fully Desychchronized Round-
robin Algorithms

Recently, a group of new round-robin scheduling
algorithms SRR (static round-robin) has been proposed
[7]. The basic idea is to keep full pointer-desychronization
in the output and/or input arbiters. There are different
variations of SRR, which are SSRR (single static round-
robin), DSRR (double static round-robin) and RDSRR
(rotating DSRR) [7]. Among them, the RDSRR performs
the best. We now give the specification of RDSRR:

Initialization. The output pointers are set to some
initial pattern such that there is no duplication among the
pointers. The same is done to the input pointers.

The 3 steps of a single iteration are:

Step 1: Request. Each input sends a request to every
output for which it has a queued cell.

Step 2: Grant. If an output receives any requests, it
chooses the one that appears next in a fixed, round-robin
schedule starting from the highest priority element. To
achieve fairness, clockwise and counter-clockwise
rotation of the arbiter pointers are done alternatively, each
for one time slot. The output notifies each input whether
or not its request was granted. The pointer to the highest
priority element of the round-robin schedule is always
incremented by one (modulo N) whether there is a grant
or not.

Step 3: Accept. If an input receives a grant, it accepts
the one that appears next in a fixed, round-robin schedule
starting from the highest priority element. The pointer to
the highest priority element of the round-robin schedule is
always incremented by one (modulo N) whether there is a
grant or not.

The key achievements with RDSRR are: (a) lower
delay (b) With clockwise and counter-clockwise rotation
scheme, each input has a chance to be served; and (c) easy
to implement in hardware.

4. Derandomized rotating double static
round-robin algorithm

In this paper, we propose a new scheduling algorithm
which not only maintains the good delay performance of
RDSRR but is stable under any admissible traffic as well.

We call it the DRDSRR (derandomized rotating double
static round-robin).

In Section 2, we briefly introduced a proof for the
stability of Algo2. In particular, we can see that if an
algorithm uses memory and the Hamiltonian walk, it can
be made stable. This property will be used as part of the
design of our DRDSRR algorithm.

4.1. Specification of DRDSRR

Through the above observations, we now give the
specification of DRDSRR:

Initialization. The output pointers are set to some initial
pattern such that there is no duplication among the
pointers. The same is done for the input pointers.

 Step 1: Let S(t - 1) be the schedule used at the
previous time slot. At the current time slot t, let R(t) = Z(t),
the matching visited by the Hamiltonian walk.

Step 2: Request. Each input sends a request to every
output for which it has a queued cell.

Step 3: Grant. If an output receives any requests, it
chooses the one that appears next in a fixed, round-robin
schedule starting from the highest priority element. To
achieve fairness, clockwise and counter-clockwise
rotations of the pointers are done alternatively, each for
one time slot. The output notifies each input whether or
not its request was granted. The pointer to the highest
priority element of the round-robin schedule is always
incremented by one (modulo N) whether there is a grant
or not.

Step 4: Temporal Accept. If an input receives a grant, it
selects one that appears next in a fixed, round-robin
schedule starting from the highest priority element. The
pointer to the highest priority element of the round-robin
schedule is always incremented by one (modulo N)
whether there is a grant or not.

Step 2 to Step 4 are iteratively executed, resulting in a
matching, we call it M’(t) (unmatched inputs are matched
to unmatched outputs arbitrarily with no weights).

Step 5: Accept. Let M(t) =

arg
)}('),(),1({

max
tMtRtSS −∈

<S,Q(t)>. M(t) is the present

schedule. The corresponding inputs send accepts to
corresponding outputs.

4.2. Stability of DRDSRR

Proof. DRDSRR uses the Hamiltonian walk with memory,
<M(t),Q(t) ≥ <M(t-1),Q(t)> and <M(t),Q(t)> ≥ <Z(t),Q(t)>.
Therefore, Lemma 2 and Lemma 3 apply. The weight
difference between the maximum weight matching and

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

DRDSRR is lower bounded by a positive constant all the
time. As shown in Lemma 3, this is sufficient to prove its
stability.

 The Hamiltonian walk is used to ensure the stability of
DRDSRR. In practice, the implementation of the
Hamiltonian walk is extremely simple. In Chapter 7 of
[10], there is a very simple algorithm generating a
Hamiltonian walk and it only requires O(1) space and O(1)
time.

5. An improved version of DRDSRR

The RDSRR scheduling algorithm with multiple
iterations can result in a maximal matching. However, the
matching determined by DRDSRR is not of maximal size.
In Step 5, queue-lengths are only used to select the
heaviest matching from S(t – 1), R(t) and M’(t). It is
therefore possible that the resulting matching is heavy, but
not of maximal size. We consider making DRDSRR a
maximal size matching as well. Suppose there are k
unmatched inputs and outputs left by the DRDSRR
algorithm. We augment the matchings between those
inputs and outputs repeatedly until no more connections
can be made. This is easy to implement. The time
complexity is at most O(k2). We shall call this version as
DRDSRR(v2).

6. Simulation results

In our simulation, we consider a 32x32 switch. The
traffic is Bernoulli i.i.d. and is admissible (no input or
output is overloaded). Uniform traffic, uniform bursty
traffic and various non-uniform traffic patterns, namely
the diagonal and hotspot cases are considered. The
algorithms are executed using 1 iteration.

The traffic matrix of hotspot traffic is like (for a 4x4
switch):



















xxxx

xxxx

xxxx

xxxx

2

2

2

2

Output 1 is the hot-spot with
higher rate of traffic destined to
it, and all other traffic is
distributed to other outputs
uniformly.

The traffic matrix of the diagonal traffic is like (for a
4x4 switch):



















−
−

−
−

xx

xx

xx

xx

001

100

010

001

The traffic is concentrated on
two diagonals. One is heavier
than the other. (x = 2/3)

6.1. Delay performance

Figure 1 shows the simulation results under uniform
traffic. The average delay of DRDSRR is lower than

FIRM and iSLIP and comparable with RDSRR. When the
load is below 0.5, SERENA and LAURA have much
higher delays than DRDSRR. When the load is above 0.5,
SERENA and LAURA are better than DRDSRR and
other maximal size matching algorithms. It is because
those maximal size matching algorithms are run using
only 1 iteration. However, DRDSRR(v2) has a much
lower delay over all the ranges.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

32x32 switch under uniform traffic

Normalized load
A

ve
ra

ge
 d

el
ay

iSLIP
FIRM
RDSRR
SERENA
LAURA
DRDSRR
DRDSRR(v2)
MWM(LQF)

Figure 1. Average delay under uniform traffic.

Figure 2 shows the results when those maximal size

matching algorithms, DRDSRR and DRDSRR(v2) are run
using 3 iterations under uniform traffic. It is obvious that
iSLIP, FIRM, RDSRR, DRDSRR and DRDSRR(v2) have
similar delay. They are much better than SERENA and
LAURA.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-2

10
-1

10
0

10
1

10
2

10
3

32x32 switch under uniform traffic

Normalized load

A
ve

ra
ge

 lo
ad

iSLIP-3
FIRM-3
RDSRR-3
SERENA
LAURA
DRDSRR-3
DRDSRR(v2)-3
MWM(LQF)

Figure 2. Average delay under uniform traffic.

Figure 3 compares the various algorithms under

uniform bursty traffic. These results are similar to the
uniform case and DRDSRR(v2) still performs very well.

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

32x32 switch under uniform bursty traffic

Normalized load

A
ve

ra
ge

 d
el

ay

iSLIP
FIRM
RDSRR
SERENA
LAURA
DRDSRR
DRDSRR(v2)
MWM(LQF)

Figure 3. Average delay under uniform bursty
traffic.

Figure 4 shows the results when all the maximal size

matching algorithms, DRDSRR and DRDSRR(v2) are run
using 3 iterations under uniform bursty traffic. We can see
that the results are similar to the uniform case with 3
iterations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

32x32 switch under uniform bursty traffic

Normalized load

A
ve

ra
ge

 d
el

ay

iSLIP-3
FIRM-3
RDSRR-3
SERENA
LAURA
DRDSRR-3
DRDSRR(v2)-3
MWM(LQF)

Figure 4. Average delay under uniform bursty traffic.

Figure 5 shows the results under diagonal traffic.

DRDSRR and DRDSRR(v2) both have much better
performance than FIRM, iSLIP, and RDSRR, even much
better than SERENA and LAURA. Their performances
are comparable with MWM.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

32x32 switch under diagonal traffic

Normalized load

A
ve

ra
ge

 d
el

ay

iSLIP
FIRM
RDSRR
SERENA
LAURA
DRDSRR
DRDSRR(v2)
MWM(LQF)

Figure 5. Average delay under diagonal traffic.

Figure 6 shows the results under hotspot traffic.

DRDSRR has a good performance. Especially when 0.3 <
load < 0.5, DRDSRR has a much lower delay than iSLIP
and FIRM. Under the load of all ranges, DRDSRR is
better than SERENA and LAURA. DRDSRR(v2) is even
better than DRDSRR.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

32x32 switch under hotspot traffic

Normalized load

A
ve

ra
ge

 d
el

ay

iSLIP
FIRM
RDSRR
SERENA
LAURA
DRDSRR
DRDSRR(v2)
MWM(LQF)

Figure 6. Average delay under hotspot traffic.

6.2. Stability under non-uniform traffic

iSLIP, FIRM and RDSRR are all stable under uniform
traffic, but not under non-uniform traffic. DRDSRR and
DRDSRR(v2) are stable under any admissible traffic. We
now compare DRDSRR and DRDSRR(v2) with the
others under diagonal traffic as a function of their norms
of queue-lengths vector. We define queue-lengths vector
as Q(t) = (Q1,1(t),…,Q1,N(t),…,QM,N(t))T, the norm of
queue-lengths vector as ||Q(t)|| =)()(tt QQ

T .

From Figure 7, we see that iSLIP, FIRM and RDSRR
will have large packet losses at high loads. DRDSRR and
DRDSRR(v2) perform quite competitively with respect to

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

MWM. They maintain even much smaller queue lengths
than SERENA and LAURA do.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-2

10
0

10
2

10
4

10
6

32x32 switch under diagonal traffic

Normalized load

N
or

m
 o

f
qu

eu
e

-le
ng

th
s

ve
ct

or

iSLIP
FIRM
RDSRR
SERENA
LAURA
DRDSRR
DRDSRR(v2)
MWM(LQF)

Figure 7. Norm of queue-lengths vector under diagonal

traffic.

7. Complexity analysis

Actually, to make an iterative algorithm stable, there
are other ways proposed. For example, iLQF [11], and
iLPF [11]. Both algorithms attempt to approximate the
MWM algorithms. iLQF is a 3-step iterative algorithm. In
the Grant and Accept steps, each arbiter chooses the one
with the largest queue length. Those arbiters dominate the
iteration time, each requiring a modified N-input
magnitude comparator, which are slow due to the large
number of input values they need to compare. The basic
building block, a two-input integer comparator is
relatively complex. The best running time of each arbiter
is O(logb⋅logN), where b is the number of bits of each
input equalling to logQmax. iLPF is simpler than iLQF.
The double for-loop version first requires the use of a
sorter to sort both the input port occupancies and output
port occupancies. It takes an O(NlogN) time and more
space cost. The sorting procedure is followed by a double
for-loop which chooses a maximal size matching. For our
DRDSRR, except for the cost of obtaining the matching
M’(t) derived from the RDSRR, it only requires an
additional computing of the Hamiltonian walk matching,
which is simple to implement. The algorithm in [10]
requires only O(1) time and O(1) space. Then we require
to compute weights of the matchings, which cost O(logN)
time using logN adders and get a matching with maximum
weight among them, it only takes constant time. All
together this is not high and space cost is low too.
Concurrency between obtaining R(t), M’(t) and computing
their weights are possible, allowing the complexity to be
even lower.

DRDSRR(v2) requires to compute a maximal size
matching. An additional computational complexity of
O(k2) is required if the number of unmatched inputs and
outputs is k. That is not a large additional expense.

8. Hardware implementation

Figure 8 shows a scheme for a possible design of the
DRDSRR. The module for the RDSRR scheduler can be
made similar to that used in the iSLIP algorithm (see Fig.
7 in [7]).

�����

�����	
��

��
�������

����

������ ���� �� ���

Figure 8. Implementation of the DRDSRR scheme.

 Below, we will illustrate an improved scheme for the
implementation of the RDSRR scheduler.

 The advantage of the iterative maximal matching
scheduling algorithms is that they are relatively easy to
implement in hardware. Figure 9 shows the overall
architecture of the RDSRR scheduler. The three blocks
represent the request phase, the grant phase, and the
accept phase of the algorithm. The request blocks are used
to store and forward the incoming request vectors to the
grant blocks. After the request vectors pass through the
grant stage and the accept stage, the scheduler will make a
decision by selecting which input and output ports should
be connected. The successive iterations of the algorithm
can help increase the number of input/output matching
during each cell time. A feedback loop is used to mask off
those requests that have been accepted in the previous
iterations. The scheduler will not consider the accepted
requests again during the next iteration. In fact, the
request blocks are registers, and we can simply treat them
and the grant blocks as a single unit.

 The throughput of the hardware architecture shown in
Figure 9 can be improved by applying efficient pipelining
techniques. By careful examination on the pipeline
structure used in the Tiny Tera (Figure 10) [13], we
realized that the pipeline structure can be further
optimized so that it can achieve one more iteration within
the fixed amount of cycle time by using the same grant
and accept arbiter hardware structure.

 The optimized pipelining scheme can be applied in any
iterative maximal matching scheduling algorithm that is
made up of request, grant and accept phases.

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

 In the following, we try to evaluate a generic maximal
matching scheduling algorithm with the original pipeline
structure which used in the Tiny Tera and the proposed
optimized pipelining scheme. These two different
pipelining schemes are being evaluated under Bernoulli
i.i.d. uniform traffic, uniform bursty traffic and non-
uniform traffic with a 128x128 switch executing one
iteration only.

 The traffic matrix of the non-uniform traffic is like (for
a 4x4 switch):



















−
−

−
−

xx

xx

xx

xx

001

100

010

001
 The traffic is concentrated on

two diagonals. (x = 1/2)

 Figure 11 and Figure 12 shows that the proposed
optimized pipeline scheme gives a significant
improvement under Bernoulli i.i.d. uniform and uniform
bursty traffic when compared with the conventional
pipeline scheme. While Figure 13 shows the proposed
optimized pipeline scheme gives a little improvement
under the non-uniform traffic that is described above.

Figure 9. Overall architecture on the scheduler.

Figure 10. Pipeline Structure used in Tiny Tera.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-2

10
-1

100

10
1

102

10
3

Normalized Load

A
ve

ra
ge

 D
el

ay

128x128 switch under uniform traffic

conventional pipeline scheme
optimized pipeline scheme

Figure 11. Average delay under uniform traffic.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

Normalized Load

A
ve

ra
ge

 D
el

ay

128x128 switch under bursty traffic

conventional pipeline scheme
optimized pipeline scheme

Figure 12. Average delay under bursty traffic.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-2

10
-1

10
0

10
1

10
2

Normalized Load

A
ve

ra
ge

 D
el

ay

128x128 switch under non-uniform traffic

conventional pipeline scheme
optimized pipeline scheme

Figure 13. Average delay under non-uniform traffic.

Req.

Buffer

Grant

Arbiter

Accept
Arbiter

New Request

Req.

Buffer

Grant
Arbiter

Accept
Arbiter New Request

Req.

Buffer

Grant
Arbiter

Accept
Arbiter New Request

Decision

Decision

Decision

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

 The most critical components inside the scheduler are
the grant arbiters and the accept arbiters. These two
arbiters have the same hardware architecture as shown in
Figure 14 [13].

 The priority filter and the priority encoder are sitting at
the most critical path inside the scheduler. Therefore
careful design on both of the priority filter and the priority
encoder can save the data processing time, and hence
detrmine the hardware scalability of the scheduler.

 The priority filter is being built with time delay
proportional to log2N (where N is the number of input
port). All the hardware logic inside the priority filter are
highly parallelized and can be easily built by using the
AND, OR, XNOR and MUX logic.

 The time delay for the priority encoder circuit is also
proportional to log2N (where N is the number of input
port). With the use of dynamic logic and parallelizing the
logic, we have already demonstrated that a 256 bits
priority encoder can achieve a time delay equal to 1.26 ns
by using 2.5V 0.25� CMOS technology.

Figure 14. Arbiter hardware structure.

9. Generalization of DRDSRR

By exploiting the concept of randomized algorithms,
actually not only RDSRR can be made to be stable, the
other iterative scheduling algorithms may also achieve
stability if similar modifications are employed. For
example, using the iSLIP [5], we add one step to compute
S(t - 1) and R(t) = Z(t) at the beginning and after the

iterative steps of iSLIP are executed, resulting in a
matching M’(t), then we add a step:

 Accept. Let M(t) = arg
)}('),(),1({

max
tMtRtSS −∈

<S,Q(t)>. M(t)

is the present schedule. The corresponding inputs send
accepts to the corresponding outputs.

In this case, the stability proof is similar to the proof of
Lemma 3.

10. Conclusion

 Maximum weight matching algorithms perform very
well under non-uniform traffic, and are consequently
stable. But they are too complex to implement. Their
approximating algorithms are not much simpler too.
Randomized algorithms are shown to achieve stability
under any admissible traffic, but they inquire a high delay
compared with iterative maximal matching algorithms
(especially for somewhat uniform traffic). The group of
SRR maximal matching algorithms have good delay
performance, but are not stable under non-uniform traffic.
In this paper, we have modified the RDSRR to
derandomized RDSRR (DRDSRR) based on the concept
of randomized algorithms. As a result, DRDSRR is shown
to be stable under any admissible traffic while
maintaining lower delay performance and is still simple to
implement. We also make some improvement in hardware
design. By making DRDSRR a maximal size matching,
DRDSRR(v2) has improved performance over DRDSRR.
We have also demonstrated that the hardware design of
these algorithms is possible for switch sizes as large as
256x256 operating at OC-192 line rates. Finally, the basic
idea of DRDSRR is shown that it can also be applied to
other iterative scheduling algorithms so as to make them
stable.

References

[1] M. Karol, M. Hluchyj, and S. Morgan, “Input
versus Output Queuing on a Space Division
Switch,” IEEE Trans. Communications, 35(12)
(1987) pp.1347-1356.

[2] T. Anderson, S. Owicki, J. Saxe, and C. Thacker,
“High Speed Switch Scheduling for Local Area
Networks,” ACM Trans. Comput. Syst., pp. 319-52,
Nov. 1993.

[3] A. Mekkittikul and N. McKeown, “A Starvation-
free Algorithm for Achieving 100% Throughput in
an Input-Queued Switch,” ICCCN '96, Oct. 1996,
pp.226-231.

[4] A. Mekkittikul and N. McKeown, “A Practical
Scheduling Algorithm to Achieve 100%

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

Throughput in Input-Queued Switches,” IEEE
INFOCOM 98, San Francisco, April, 1998, vol. 2,
pp.792-799.

[5] N. McKeown, “iSLIP: A Scheduling Algorithm for
Input-Queued Switches,” IEEE Transactions on
Networking, April 1999, Vol 7, No.2.

[6] D. N. Serpanos and P. I. Antoniadis, “FIRM: A
Class of Distributed Scheduling Algorithms for
High-speed ATM Switches with Multiple Input
Queues,” IEEE INFOCOM, 2000.

[7] Ying Jiang and M. Hamdi, “A Fully
Desynchronized Round-Robin Matching Scheduler
for a VOQ Packet Switch Architecture,” High
Performance Switching and Routing, 2001 IEEE
Workshop on, pp. 407-411.

[8] L. Tassiulas, “Linear Complexity Algorithms for
Maximum Throughput in Radio Networks and
Input Queued Switches,” IEEE INFOCOM’98,
New York, 1998, vol. 2, pp.533-539.

[9] P. Giaccone, B. Prabhakar, and D. Shah, “Towards
Simple, High-performance Schedulers for High-
aggregate Bandwidth Switches,” IEEE INFOCOM,
2002.

[10] A. Nijenhuis and H. Wilf, “Combinatorial
Algorithms: for Computers and Calculators”, 2nd
Edition, Academic Press, chap. 7, New York, 1978,
p. 56.

[11] A. Mekkittikul, “Scheduling Non-uniform Traffic
in High Speed Packet Switches and Routers,” PhD
Thesis (181 pages), Stanford University, November
1998.

[12] P. Giaccone, B. Queueing and Scheduling
Algorithms for High-Performance Routers. PhD
thesis, Politecnico Di Torino, Italy, 2002.

[13] P. Gupta and N. McKeown, “Design and
Implementation of a Fast Crossbar Scheduler,”
IEEE Micro Magazine, Jan-Feb 1999.

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

