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Abstract 

High-performance input-queued switches require high-
speed scheduling algorithms while maintaining good 
performance. Various round-robin scheduling algorithms 
for Virtual Output Queuing (VOQ) crossbar-based packet 
switch architectures have been proposed. It has been 
demonstrated that they can operate at high speed (e.g., 
OC192), and are relatively simple to implement in 
hardware. In particular, a group of fully desynchronized 
round-robin scheduling algorithms, named SRR (static 
round robin matching), which have been proposed 
recently, achieve pretty good delay performance while 
easy to implement. The main problem with these 
arbitration algorithms is that they are not stable under 
non-uniform traffic. In this paper, based on the concept of 
both randomized algorithms and SRR, we propose a new 
scheduling algorithm, termed DRDSRR (derandomized 
rotating double static round-robin), which is shown to be 
stable under all Bernoulli i.i.d. admissible traffic and 
performs better than SRR.. In addition, we also propose a 
novel pipelining scheme for the hardware implementation 
of these scheduling algorithms which can achieve one 
more iteration within each cycle time, and hence better 
performance, when compared with the pipelining schemes 
used in conventional designs. 

1. Introduction 

Input queued (IQ) switches are frequently used in the 
design of high-speed switching architectures. IQ switches 
have an internal speedup equivalent to the line rate, and as 
a result, require moderate memory bandwidth which is 
commercially available. However, it is well known that 
the Head of Line Blocking (HOL) limits the throughput of 
an IQ switches with a crossbar fabric to a 58.6% [1] under  
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uniform traffic when a single FIFO queue is used at each 
input. It is well established that using virtual output 
queuing (VOQ) [2] can eliminate the HOL blocking 
entirely while retaining the same scalability and memory 
bandwidth requirement of a FIFO IQ switch. Instead of a 
single FIFO queue, separate queues for different outputs 
are maintained at each input. With a proper scheduling 
algorithm, it has been shown that 100% throughput can be 
achieved for an IQ switch employing VOQ under both 
uniform and non-uniform traffic. 

Various scheduling algorithms have been proposed for 
the VOQ architecture. For example, maximum 
weight/size matching algorithms can achieve 100% 
throughput, i.e., stable under any admissible traffic. Such 
algorithms include LQF, OCF, LPF [3][4]. But they are 
impractical and too complex to implement in hardware for 
high-speed line rates. Maximal size matching (MSM) 
algorithms are practical and perform well under uniform 
traffic. But they are not stable under non-uniform traffic, 
which infers less than 100% throughput. Example 
algorithms are iSLIP [5], and FIRM [6]. Recently, a set of 
fully desynchronized round robin scheduling algorithms, 
SRR (static round-robin) [7] have been proposed. They 
perform much better than iSLIP and FIRM using even 
less complicated hardware. However, they are inevitably 
unstable under non-uniform traffic, since they are MSM 
algorithms.  

    Recently, it has been proven that some randomized 
algorithms can be made stable under any admissible 
traffic and only require linear complexity [8]. However, 
through extensive experimentations, it has been shown 
that the average delay of these randomised algorithms is 
higher than those of maximal size matching algorithms. 
This is true even for non-uniform traffic as long as the 
maximal size matching algorithms are operating in their 
“stable” region [12]. The main reason for this is that the 
randomised algorithms have been designed with the 
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objective of making them stable, rather than achieving a 
small average delay. In this paper, we propose a new 
algorithm: DRDSRR (derandomized rotating double static 
round-robin) that attempts to combine the advantages of 
both schemes. That is, being stable and having lower 
average delays. DRDSRR achieves both a high 
instantaneous throughput of a MSM algorithm, and the 
stability of randomized algorithms. As a result, it will be 
shown that the DRDSRR is not only stable under any 
traffic, but has low average delay as well.  

The rest of the paper is organized as follows. Section 2 
briefly describes randomized algorithms. Section 3 
introduces the SRR scheduling algorithms. We present the 
DRDSRR algorithm in Section 4. In Section 5, an 
improved version of DRDSRR is proposed. Section 6 
presents the simulation results and Section 7 analyzes the 
computational complexity of the proposed algorithms. 
Section 8 gives a possible hardware implementation of 
our algorithms. In Section 9, we exploit a generalization 
of DRDSRR to other round-robin scheduling algorithms. 
Section 10 concludes the paper. 

  
2. Randomized algorithms 

Randomized algorithms are based on several 
observations which include: (a) the state of the switch (for 
example, the lengths of its queues) changes little during 
successive time slots. This indicates that it is possible to 
use the matching at time t for devising the matching at 
time t + 1. (b) A randomly generated matching can be 
used to improve the matching used at time t for obtaining 
the matching at time t + 1.  

2.1. Algo1: A randomized scheme with memory 

Based on the above concepts, a scheduling (matching) 
algorithm is proposed by Tassiulas [8]. 
Algo1: 

(a) Let S(t) be the schedule used at time t. 
(b) At time t + 1 choose a matching R(t + 1) 

uniformly at random from the set of all N! 
possible matchings. 

(c) Let S(t + 1) = arg 
)}1(),({

max
+∈ tRtSS

<S,Q(t +1)> (Q(t 

+1) is the queue-lengths matrix at time t + 1.) 

Lemma 1 (Tassiulas [8]). Algo1 is stable under any 
Bernoulli i.i.d. admissible input. 
 
2.2. Hamiltonian walk on the set of all matchings 

 
We construct a graph with N! nodes, each 

corresponding to a distinct matching, and all possible 
edges between these nodes. A Hamiltonian walk on this 
graph is to visit each of the N! nodes exactly once during 

times t = 1,…, N!. Extend t > N! by defining Z(t) = Z(t 
mod N!). For example, when N = 3, we get such a 
Hamiltonian walk: Z(1) = (1, 2, 3), Z(2) = (1, 3, 2), Z(3) = 
(3, 1, 2), Z(4) = (3, 2, 1), Z(5) = (2, 3, 1), Z(6) = (2, 1, 3), 
Z(7) = Z(1), and Z(8) = Z(2),… ((1, 2, 3) denotes a 
permutation (π (1), π (2), π (3))). 

 
2.3. Algo2: A derandomization of Algo1 
 
    Based on the concept of Hamiltonian walk on the set of 
all matchings, Algo2  a derandomization of Algo 1 is 
proposed by Paolo Giaccone [9]. 

Algo2: 
(a) Let S(t) be the schedule used at time t. 
(b) At time t + 1, let R(t + 1) = Z(t + 1), the matching 

visited by the Hamiltonian walk. 

(c) Let S(t + 1) = arg 
)}1(),({

max
+∈ tRtSS

<S,Q(t + 1)> 

Lemma 2 (Paolo Giaccone [9]) Consider an input-
queued switch with admissible Bernoulli i.i.d.  inputs. Let 
Q(t) be the queue-size process that results when the 

switch uses a given scheduling algorithm B. Let WB(t) 
denote the weight of the schedule used by B at time t, and 
let W*(t) be the weight of Maximum Weight Matching 
(MWM) given the same queue-size process Q(t). If there 
exists a positive constant c such that the property  

WB(t) ≥ W*(t)-c holds for all t, then the 
algorithm B is stable. 

Lemma 3 (Paolo Giaccone [9]) An input-queued switch 
using Algo2 is stable under all admissible Bernoulli i.i.d. 
inputs. 

Proof. Since there is at most 1 packet arriving at or 
departing from each input queue in each time slot, we 
obtain for any matching M  

<M,Q(t)> ≥ <M,Q(t - s)> - sN.  (1) 

    Let S(t) denote the schedule used by Algo2 at time t, 
and let W2(t) = <S(t),Q(t)> be its weight. 

    Consider a specific time instant T. Let S1 and S0 denote 
the maximum weight matchings at time T and T - N!, 
respectively. By the property of the Hamiltonian walk, 
there is a t’∈[T - N!,T] such that Z(t’) = S0. Then 

    <S(t’),Q(t’)> ≥  <S0,Q(t’)> (the definition of Algo2)  

    <S0,Q(t’)> ≥  <S0,Q(T - N!)>-(t’ + N! - T)N (from (1)) 

    It follows from (1) and the definition of Algo2 that 

    <S(t),Q(t)> - N ≤  <S(t),Q(t + 1)> ≤  <S(t + 1),Q(t + 
1)>. 

    Using this repeatedly in the following, we obtain 

<S(T),Q(T)> ≥  <S(t’),Q(t’)> - (T - t’)N ≥  <S0,Q(T - 
N!)> - NN! ≥  <S1,Q(T - N!)> - NN! 
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 (S0 is the maximum weight schedule at time (T-N!)) and 
<S1,Q(T-N!)>-NN! ≥  <S1,Q(T)> - 2NN! (from (1)) 

    Since T was arbitrary, we have shown that 

     W2(t) ≥ W*(t)-2NN! For every t.  

    By Lemma 2, it is proven that Algo2 is stable under all 
admissible Bernoulli i.i.d. inputs. 

3. A group of Fully Desychchronized Round-
robin Algorithms 

 

Recently, a group of new round-robin scheduling 
algorithms SRR (static round-robin) has been proposed 
[7]. The basic idea is to keep full pointer-desychronization 
in the output and/or input arbiters. There are different 
variations of SRR, which are SSRR (single static round-
robin), DSRR (double static round-robin) and RDSRR 
(rotating DSRR) [7]. Among them, the RDSRR performs 
the best. We now give the specification of RDSRR: 

Initialization. The output pointers are set to some 
initial pattern such that there is no duplication among the 
pointers. The same is done to the input pointers. 

The 3 steps of a single iteration are: 

Step 1: Request. Each input sends a request to every 
output for which it has a queued cell. 

Step 2: Grant. If an output receives any requests, it 
chooses the one that appears next in a fixed, round-robin 
schedule starting from the highest priority element. To 
achieve fairness, clockwise and counter-clockwise 
rotation of the arbiter pointers are done alternatively, each 
for one time slot. The output notifies each input whether 
or not its request was granted. The pointer to the highest 
priority element of the round-robin schedule is always 
incremented by one (modulo N) whether there is a grant 
or not. 

Step 3: Accept. If an input receives a grant, it accepts 
the one that appears next in a fixed, round-robin schedule 
starting from the highest priority element. The pointer to 
the highest priority element of the round-robin schedule is 
always incremented by one (modulo N) whether there is a 
grant or not. 

The key achievements with RDSRR are: (a) lower 
delay (b) With clockwise and counter-clockwise rotation 
scheme, each input has a chance to be served; and (c) easy 
to implement in hardware. 

 
4.  Derandomized rotating double static 
round-robin algorithm 

In this paper, we propose a new scheduling algorithm 
which not only maintains the good delay performance of 
RDSRR but is stable under any admissible traffic as well. 

We call it the DRDSRR (derandomized rotating double 
static round-robin).  

In Section 2, we briefly introduced a proof for the 
stability of Algo2. In particular, we can see that if an 
algorithm uses memory and the Hamiltonian walk, it can 
be made stable. This property will be used as part of the 
design of our DRDSRR algorithm. 

 
4.1. Specification of DRDSRR 

 

Through the above observations, we now give the 
specification of DRDSRR: 

Initialization. The output pointers are set to some initial 
pattern such that there is no duplication among the 
pointers. The same is done for the input pointers. 

 Step 1: Let S(t - 1) be the schedule used at the 
previous time slot. At the current time slot t, let R(t) = Z(t), 
the matching visited by the Hamiltonian walk. 

Step 2: Request. Each input sends a request to every 
output for which it has a queued cell. 

Step 3: Grant. If an output receives any requests, it 
chooses the one that appears next in a fixed, round-robin 
schedule starting from the highest priority element. To 
achieve fairness, clockwise and counter-clockwise 
rotations of the pointers are done alternatively, each for 
one time slot. The output notifies each input whether or 
not its request was granted. The pointer to the highest 
priority element of the round-robin schedule is always 
incremented by one (modulo N) whether there is a grant 
or not. 

Step 4: Temporal Accept. If an input receives a grant, it 
selects one that appears next in a fixed, round-robin 
schedule starting from the highest priority element. The 
pointer to the highest priority element of the round-robin 
schedule is always incremented by one (modulo N) 
whether there is a grant or not. 

Step 2 to Step 4 are iteratively executed, resulting in a 
matching, we call it M’(t) (unmatched inputs are matched 
to unmatched outputs arbitrarily with no weights). 

Step 5: Accept. Let M(t) =  

arg 
)}('),(),1({

max
tMtRtSS −∈

<S,Q(t)>. M(t) is the present 

schedule. The corresponding inputs send accepts to 
corresponding outputs. 

 
4.2. Stability of DRDSRR 
 
Proof. DRDSRR uses the Hamiltonian walk with memory,     
<M(t),Q(t) ≥ <M(t-1),Q(t)> and <M(t),Q(t)> ≥ <Z(t),Q(t)>. 
Therefore, Lemma 2 and Lemma 3 apply. The weight 
difference between the maximum weight matching and 
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DRDSRR is lower bounded by a positive constant all the 
time. As shown in Lemma 3, this is sufficient to prove its 
stability. 

   The Hamiltonian walk is used to ensure the stability of 
DRDSRR. In practice, the implementation of the 
Hamiltonian walk is extremely simple. In Chapter 7 of 
[10], there is a very simple algorithm generating a 
Hamiltonian walk and it only requires O(1) space and O(1) 
time. 
 
5. An improved version of DRDSRR 
 

The RDSRR scheduling algorithm with multiple 
iterations can result in a maximal matching. However, the 
matching determined by DRDSRR is not of maximal size. 
In Step 5, queue-lengths are only used to select the 
heaviest matching from S(t – 1), R(t) and M’(t). It is 
therefore possible that the resulting matching is heavy, but 
not of maximal size. We consider making DRDSRR a 
maximal size matching as well. Suppose there are k 
unmatched inputs and outputs left by the DRDSRR 
algorithm. We augment the matchings between those 
inputs and outputs repeatedly until no more connections 
can be made. This is easy to implement. The time 
complexity is at most O(k2). We shall call this version as 
DRDSRR(v2). 

 
6. Simulation results 

In our simulation, we consider a 32x32 switch. The 
traffic is Bernoulli i.i.d. and is admissible (no input or 
output is overloaded). Uniform traffic, uniform bursty 
traffic and various non-uniform traffic patterns, namely 
the diagonal and hotspot cases are considered. The 
algorithms are executed using 1 iteration.   

The traffic matrix of hotspot traffic is like (for a 4x4 
switch): 



















xxxx

xxxx

xxxx

xxxx

2

2

2

2
 

Output 1 is the hot-spot with 
higher rate of traffic destined to 
it, and all other traffic is 
distributed to other outputs 
uniformly. 
 

The traffic matrix of the diagonal traffic is like (for a 
4x4 switch): 



















−
−

−
−

xx

xx

xx

xx

001

100

010

001
 

The traffic is concentrated on 
two diagonals. One is heavier 
than the other. (x = 2/3) 
 

6.1. Delay performance 
 

Figure 1 shows the simulation results under uniform 
traffic. The average delay of DRDSRR is lower than 

FIRM and iSLIP and comparable with RDSRR. When the 
load is below 0.5, SERENA and LAURA have much 
higher delays than DRDSRR. When the load is above 0.5, 
SERENA and LAURA are better than DRDSRR and 
other maximal size matching algorithms. It is because 
those maximal size matching algorithms are run using 
only 1 iteration. However, DRDSRR(v2) has a much 
lower delay over  all the ranges. 
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Figure 1. Average delay under uniform traffic. 

 
Figure  2 shows the results when those maximal size 

matching algorithms, DRDSRR and DRDSRR(v2) are run 
using 3 iterations under uniform traffic. It is obvious that 
iSLIP, FIRM, RDSRR, DRDSRR and DRDSRR(v2) have 
similar delay. They are much better than SERENA and 
LAURA. 
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Figure 2. Average delay under uniform traffic. 

 
 
 
Figure 3 compares the various algorithms under 

uniform bursty traffic. These results are similar to the 
uniform case and DRDSRR(v2) still performs very well. 
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Figure 3. Average delay under uniform bursty 
traffic. 

 
Figure 4 shows the results when all the maximal size 

matching algorithms, DRDSRR and DRDSRR(v2) are run 
using 3 iterations under uniform bursty traffic. We can see 
that the results are similar to the uniform case with 3 
iterations. 
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Figure 4. Average delay under uniform bursty traffic.  

 
 
 
Figure 5 shows the results under diagonal traffic. 

DRDSRR and DRDSRR(v2) both have much better 
performance than FIRM, iSLIP, and RDSRR, even much 
better than SERENA and LAURA. Their performances 
are comparable with MWM. 
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Figure 5. Average delay under diagonal traffic.  

 
Figure 6 shows the results under hotspot traffic. 

DRDSRR has a good performance. Especially when 0.3 < 
load < 0.5, DRDSRR has a much lower delay than iSLIP 
and FIRM. Under the load of all ranges, DRDSRR is 
better than SERENA and LAURA. DRDSRR(v2) is even 
better than DRDSRR. 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

32x32 switch under hotspot traffic

Normalized load

A
ve

ra
ge

 d
el

ay

iSLIP     
FIRM      
RDSRR     
SERENA    
LAURA     
DRDSRR    
DRDSRR(v2)
MWM(LQF)  

 
Figure 6. Average delay under hotspot traffic. 

 
6.2. Stability under non-uniform traffic 
 

iSLIP,  FIRM and RDSRR are all stable under uniform 
traffic, but not under non-uniform traffic. DRDSRR and 
DRDSRR(v2) are stable under any admissible traffic. We 
now compare DRDSRR and DRDSRR(v2) with the 
others under diagonal traffic as a function of their norms 
of queue-lengths vector. We define queue-lengths vector 
as Q(t) = (Q1,1(t),…,Q1,N(t),…,QM,N(t))T, the norm of 
queue-lengths vector as ||Q(t)|| = )()( tt QQ

T . 

From Figure 7, we see that iSLIP, FIRM and RDSRR 
will have large packet losses at high loads. DRDSRR and 
DRDSRR(v2) perform quite competitively with respect to 
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MWM. They maintain even much smaller queue lengths 
than SERENA and LAURA do. 
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Figure 7. Norm of queue-lengths vector under diagonal 

traffic. 
 
7. Complexity analysis 
 

Actually, to make an iterative algorithm stable, there 
are other ways proposed. For example, iLQF [11], and 
iLPF [11]. Both algorithms attempt to approximate the 
MWM algorithms. iLQF is a 3-step iterative algorithm. In 
the Grant and Accept steps, each arbiter chooses the one 
with the largest queue length. Those arbiters dominate the 
iteration time, each requiring a modified N-input 
magnitude comparator, which are slow due to the large 
number of input values they need to compare. The basic 
building block, a two-input integer comparator is 
relatively complex. The best running time of each arbiter 
is O(logb⋅logN), where b is the number of bits of each 
input equalling to logQmax. iLPF is simpler than iLQF. 
The double for-loop version first requires the use of a 
sorter to sort both the input port occupancies and output 
port occupancies. It takes an O(NlogN) time and more 
space cost. The sorting procedure is followed by a double 
for-loop which chooses a maximal size matching. For our 
DRDSRR, except for the cost of obtaining the matching 
M’(t) derived from the RDSRR, it only requires an 
additional computing of the Hamiltonian walk matching, 
which is simple to implement. The algorithm in [10] 
requires only O(1) time and O(1) space. Then we require 
to compute weights of the matchings, which cost O(logN) 
time using logN adders and get a matching with maximum 
weight among them, it only takes constant time. All 
together this is not high and space cost is low too. 
Concurrency between obtaining R(t), M’(t) and computing 
their weights are possible, allowing the complexity to be 
even lower. 

DRDSRR(v2) requires to compute a maximal size 
matching. An additional computational complexity of 
O(k2) is required if the number of unmatched inputs and 
outputs is k. That is not a large additional expense.  

 
8. Hardware implementation 
 

Figure 8 shows a scheme for a possible design of the 
DRDSRR. The module for the RDSRR scheduler can be 
made similar to that used in the iSLIP algorithm (see Fig. 
7 in [7]).  

 

�����

�����	
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�������

����
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Figure 8. Implementation of the DRDSRR scheme. 
 

    Below, we will illustrate an improved scheme for the 
implementation of the RDSRR scheduler. 

    The advantage of the iterative maximal matching 
scheduling algorithms is that they are relatively easy to 
implement in hardware. Figure 9 shows the overall 
architecture of the RDSRR scheduler. The three blocks 
represent the request phase, the grant phase, and the 
accept phase of the algorithm. The request blocks are used 
to store and forward the incoming request vectors to the 
grant blocks. After the request vectors pass through the 
grant stage and the accept stage, the scheduler will make a 
decision by selecting which input and output ports should 
be connected. The successive iterations of the algorithm 
can help increase the number of input/output matching 
during each cell time. A feedback loop is used to mask off 
those requests that have been accepted in the previous 
iterations. The scheduler will not consider the accepted 
requests again during the next iteration. In fact, the 
request blocks are registers, and we can simply treat them 
and the grant blocks as a single unit. 

    The throughput of the hardware architecture shown in 
Figure 9 can be improved by applying efficient pipelining 
techniques. By careful examination on the pipeline 
structure used in the Tiny Tera (Figure 10) [13], we 
realized that the pipeline structure can be further 
optimized so that it can achieve one more iteration within 
the fixed amount of cycle time by using the same grant 
and accept arbiter hardware structure.  

    The optimized pipelining scheme can be applied in any 
iterative maximal matching scheduling algorithm that is 
made up of request, grant and accept phases.  
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    In the following, we try to evaluate a generic maximal 
matching scheduling algorithm with the original pipeline 
structure which used in the Tiny Tera and the proposed 
optimized pipelining scheme. These two different 
pipelining schemes are being evaluated under Bernoulli 
i.i.d. uniform traffic, uniform bursty traffic and non-
uniform traffic with a 128x128 switch executing one 
iteration only. 

    The traffic matrix of the non-uniform traffic is like (for 
a 4x4 switch): 
 



















−
−

−
−

xx

xx

xx

xx

001

100

010

001
 The traffic is concentrated on 

two diagonals. (x = 1/2) 
 

 
    Figure 11 and Figure 12 shows that the proposed 
optimized pipeline scheme gives a significant 
improvement under Bernoulli i.i.d. uniform and uniform 
bursty traffic when compared with the conventional 
pipeline scheme. While Figure 13 shows the proposed 
optimized pipeline scheme gives a little improvement 
under the non-uniform traffic that is described above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Overall architecture on the scheduler. 
 

 
Figure 10. Pipeline Structure used in Tiny Tera. 
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Figure 11. Average delay under uniform traffic. 
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Figure 12. Average delay under bursty traffic. 
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Figure 13. Average delay under non-uniform traffic. 
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    The most critical components inside the scheduler are 
the grant arbiters and the accept arbiters. These two 
arbiters have the same hardware architecture as shown in 
Figure 14 [13]. 

    The priority filter and the priority encoder are sitting at 
the most critical path inside the scheduler. Therefore 
careful design on both of the priority filter and the priority 
encoder can save the data processing time, and hence 
detrmine the hardware scalability of the scheduler. 

    The priority filter is being built with time delay 
proportional to log2N (where N is the number of input 
port). All the hardware logic inside the priority filter are 
highly parallelized and can be easily built by using the 
AND, OR, XNOR and MUX logic. 

    The time delay for the priority encoder circuit is also 
proportional to log2N (where N is the number of input 
port). With the use of dynamic logic and parallelizing the 
logic, we have already demonstrated that a 256 bits 
priority encoder can achieve a time delay equal to 1.26 ns 
by using 2.5V 0.25� CMOS technology. 
 

 
Figure 14. Arbiter hardware structure. 

 
9. Generalization of DRDSRR 
 

By exploiting the concept of randomized algorithms, 
actually not only RDSRR can be made to be stable, the 
other iterative scheduling algorithms may also achieve 
stability if similar modifications are employed. For 
example, using the iSLIP [5], we add one step to compute 
S(t - 1) and R(t) = Z(t) at the beginning and after the 

iterative steps of iSLIP are executed, resulting in a 
matching M’(t), then we add a step:  

    Accept. Let M(t) = arg 
)}('),(),1({

max
tMtRtSS −∈

<S,Q(t)>. M(t) 

is the present schedule. The corresponding inputs send 
accepts to the corresponding outputs.  

In this case, the stability proof is similar to the proof of 
Lemma 3. 

 
10. Conclusion 

 
    Maximum weight matching algorithms perform very 
well under non-uniform traffic, and are consequently 
stable. But they are too complex to implement. Their 
approximating algorithms are not much simpler too. 
Randomized algorithms are shown to achieve stability 
under any admissible traffic, but they inquire a  high delay 
compared with iterative maximal matching algorithms 
(especially for somewhat uniform traffic).  The group of 
SRR maximal matching algorithms have good delay 
performance, but are not stable under non-uniform traffic. 
In this paper, we have modified the RDSRR to 
derandomized RDSRR (DRDSRR) based on the concept 
of randomized algorithms. As a result, DRDSRR is shown 
to be stable under any admissible traffic while 
maintaining lower delay performance and is still simple to 
implement. We also make some improvement in hardware 
design. By making DRDSRR a maximal size matching, 
DRDSRR(v2) has improved performance over DRDSRR. 
We have also demonstrated that the hardware design of 
these algorithms is possible for switch sizes as large as 
256x256 operating at OC-192 line rates. Finally, the basic 
idea of DRDSRR is shown that it can also be applied to 
other iterative scheduling algorithms so as to make them 
stable. 
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